Electroweak Model and Constraints on New Physics

(Jens Erler and Paul Langacker, 11/09)

- Review of precision electroweak data (with correlations)
 - WNC, Z-Pole (LEPEWWG averages/correlations), LEP 2, M_W, m_t
 - Selected (correlated) flavor physics (g_μ-2, b→sγ, hadronic τ decay)
- Complete SM radiative corrections
 - MS-bar scheme (GAPP)
 (on-shell awkward for mixed QCD-EW, large m_t, new physics)
- Consistent and optimal theory expressions (with correlations)
- SM fit
 - consistency; $\sin^2 \theta_W$, m_H , α_s , m_t , $\Delta \alpha_{had}$
- Beyond the SM fits
 - oblique $(\rho; S, T, U)$, model independent

New for 2010

- Reorganized (section on W and Z physics)
- New data (Tevatron M_W , m_t ; $\Delta \alpha_{had}$ constraints)
- Improved theory on hadronic T decays
 - Lower α_s (better agreement with other determinations)
- Improved many body calculations for atomic parity (Cs)
 - Previous 2.3σ discrepancy resolved
- Theory corrections for NuTeV
 - Initial 3.0σ discrepancy (major effect on BSM fits)
 - A number of corrections/new effects have been identified (may shift central values, increase uncertainties)
 - Preliminary, pending NuTeV reanalysis (need by 9/11 for next PDG)

v-DIS

- NuTev: initially 3.0 σ deviation
- $\int dx \times [s \overline{s}] = 0.0020 (14) \text{ NuTeV} \implies \delta s^2_W = -0.0014 (10)$
- theory: zero crossing too early? $\implies \delta s^2_W = -0.0007$ (7)
- $K_{e3} = 4.82 (6)\% \rightarrow 5.07 (4)\% (4\sigma) \Longrightarrow \delta s^2_W = 0.0016$
- $m_d m_u (CSV) \implies \delta s^2_W = -0.0015 (3)$
- QED splitting effects (CSV) $\Rightarrow \delta s^2_W = -0.0011 (11)$
- isovector EMC effect (affecting all and not just excess neutrons) cloet, Bentz, Thomas $\Rightarrow \delta s^2_W = -0.0019$ (6) \Leftarrow
- QED radiative corrections Diener, Dittmaier, Hollik ~ $O(1\sigma)$

Input Data

Quantity	Value	Standard Model	Pull	Dev.
m_t [GeV]	173.1 ± 1.3	173.2 ± 1.3	-0.1	-0.5
M_W [GeV]	80.420 ± 0.031	80.384 ± 0.014	1.2	1.5
	80.376 ± 0.033		-0.2	0.1
g_L^2	0.3027 ± 0.0018	0.30399 ± 0.00017	-0.7	-0.6
$\begin{array}{c}g_L^2\\g_R^2\end{array}$	0.0308 ± 0.0011	0.03001 ± 0.00002	0.7	0.7
$g_V^{ u e}$	-0.040 ± 0.015	-0.0398 ± 0.0003	0.0	0.0
$g_A^{ u e}$	-0.507 ± 0.014	-0.5064 ± 0.0001	0.0	0.0
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0005	1.3	1.2
$Q_W(Cs)$	-73.20 ± 0.35	-73.15 ± 0.02	-0.1	-0.1
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.76 ± 0.04	0.1	0.1
$ au_{ au}$ [fs]	291.09 ± 0.48	290.02 ± 2.09	0.5	0.5
$\frac{\Gamma(b{\to}s\gamma)}{\Gamma(b{\to}Xe\nu)}$	$\left(3.38^{+0.51}_{-0.44}\right) \times 10^{-3}$	$(3.11 \pm 0.07) \times 10^{-3}$	0.6	0.6
$\frac{1}{2}(g_{\mu}-2-\frac{\alpha}{\pi})$	$(4511.07 \pm 0.77) \times 10^{-9}$	$(4509.13 \pm 0.08) \times 10^{-9}$	2.5	2.5

Quantity	Value	Standard Model	Pull	Dev.
M_Z [GeV]	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1	0.0
Γ_Z [GeV]	2.4952 ± 0.0023	2.4954 ± 0.0009	-0.1	0.1
$\Gamma(\text{had}) \text{ [GeV]}$	1.7444 ± 0.0020	1.7418 ± 0.0009		
$\Gamma(\text{inv}) \text{ [MeV]}$	499.0 ± 1.5	501.69 ± 0.07		
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	84.005 ± 0.015		
$\sigma_{\mathrm{had}}[\mathrm{nb}]$	41.541 ± 0.037	41.484 ± 0.008	1.5	1.5
R_e	20.804 ± 0.050	20.735 ± 0.010	1.4	1.4
R_{μ}	20.785 ± 0.033	20.735 ± 0.010	1.5	1.6
R_{τ}	20.764 ± 0.045	20.780 ± 0.010	-0.4	-0.3
R_b	0.21629 ± 0.00066	0.21578 ± 0.00005	0.8	0.8
R_c	0.1721 ± 0.0030	0.17224 ± 0.00003	0.0	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01633 ± 0.00021	-0.7	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.4	0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5	1.6
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1034 ± 0.0007	-2.7	-2.3
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0739 ± 0.0005	-0.9	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1035 ± 0.0007	-0.6	-0.4
$\bar{s}_{\ell}^{2}(A_{FB}^{(0,q)})$	0.2324 ± 0.0012	0.23146 ± 0.00012	0.8	0.7
v I B	0.2316 ± 0.0018		0.1	0.0
A_e	0.15138 ± 0.00216	0.1475 ± 0.0010	1.8	2.2
	0.1544 ± 0.0060		1.1	1.3
	0.1498 ± 0.0049		0.5	0.6
$A_{\mu} \ A_{ au}$	0.142 ± 0.015		-0.4	-0.3
A_{τ}	0.136 ± 0.015		-0.8	-0.7
	0.1439 ± 0.0043		-0.8	-0.7
A_b	0.923 ± 0.020	0.9348 ± 0.0001	-0.6	-0.6
A_c	0.670 ± 0.027	0.6680 ± 0.0004	0.1	0.1
A_s	0.895 ± 0.091	0.9357 ± 0.0001	-0.4	-0.4

SM fit results

M_Z	91.1874 ± 0.0021	1.00	-0.01	0.00	0.00	-0.01	0.00	0.12
$\widehat{m}_t(\widehat{m}_t)$	163.5 ± 1.3	-0.01	1.00	0.00	0.00	-0.10	0.00	0.39
$\widehat{m}_b(\widehat{m}_b)$	4.198 ± 0.023	0.00	0.00	1.00	0.25	-0.04	0.01	0.04
$\widehat{m}_c(\widehat{m}_c)$	$1.266^{+0.031}_{-0.036}$	0.00	0.00	0.25	1.00	0.08	0.02	0.12
$\alpha_s(M_Z)$	0.1183 ± 0.0015	-0.01	-0.10	-0.04	0.08	1.00	0.00	-0.04
$\Delta \alpha_{\rm had}^{(3)}(1.8 \text{ GeV})$	0.00574 ± 0.00010	0.00	-0.01	0.01	0.02	0.00	1.00	-0.18
M_H	90^{+27}_{-22}	0.12	0.39	0.04	0.12	-0.04	-0.18	1.00

- SM is consistent with data ($\chi^2/dof=43.0/44$)
- m_t (pole)= 173.2 ± 1.3 (176.0+8.5-7.0 from indirect alone)
- Including LEP2+ Tevatron M_H limits:
 M_H≤(145, 149, 194) GeV at (90, 95, 99) %
- Consistent with LEPEWWG and GFitter (but larger data set; important for BSM)

0.01

0.1

0.001

0.232

0.23

0.228

0.0001

LEP

100

10

 $\mu \ [GeV]$

Tevatron

1000

10000

185

Beyond the Standard Model

- Oblique (defined to vanish in SM)
 - $\rho=1.0008+0.0017-0.0007$ (for S,U=0)
 - S,T, U
 - M_H range expanded
 - Little effect on other SM parameters
- Discussion of models

(arbitrary family-universal gauge theory for WNC with V-A for ν)

1.25
Γ_{Z} , σ_{had} , R_{l} , R_{g}
1.00 asymmetries
0.75 M _W
v scattering
0.50 e scattering
0.25 APV
+ [! / / / /]
0.00
-0.25 all: M _H = 117 GeV
-0.50 E "
all: M _H = 340 GeV
-0.75 / / all: M _H = 1000 GeV
-1.00 -1.00
-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
S

Z'	electroweak	CDF	DØ	LEP 2	M_H
$\overline{Z_{\chi}}$	1,141	892	800	673	171^{+493}_{-89}
Z_{ψ}	147	878	763	481	$97^{+\ 31}_{-\ 25}$
Z_{η}	427	982	810	434	423_{-350}^{+577}
Z_{LR}	998	630		804	110^{+174}_{-35}
Z_S	1,257	821	719	_	149^{+353}_{-68}
Z_{SM}	1,403	1,030	950	1,787	331_{-246}^{+669}
$Z_{ m string}$	1,362				134^{+299}_{-58}

Qu	antity	V	alue	SM		Correlatio	on
ϵ	$i_L(u)$	0.338	± 0.016	0.3461(1)			
ϵ	$\epsilon_L(d)$	-0.434	± 0.012	-0.4292(1)		non-	
ϵ	$I_R(u)$	-0.174	$+0.013 \\ -0.004$	-0.1549(1)		Gaussian	
ϵ	$I_R(d)$	-0.023	$+0.071 \\ -0.047$	0.0775			
	g_L^2	0.3025	5 ± 0.0014	0.3040(2)	-0.18	-0.21	-0.02
	g_R^2	0.0309	9 ± 0.0010	0.0300		-0.03	-0.07
	θ_L	2.48	±0.036	2.4630(1)			0.24
	θ_R	4.58	$^{+0.41}_{-0.28}$	5.1765			
	$g_V^{ u e}$	-0.040	± 0.015	-0.0398(3)			-0.05
	$g_A^{ u e}$	-0.507	± 0.014	-0.5064(1)			
C_{1i}	$_{\iota}+C_{1d}$	0.1537	7 ± 0.0011	0.1528(1)	0.64	-0.18	-0.01
$C_{1\imath}$	$_{\iota}-C_{1d}$	-0.516	±0.014	-0.5300(3)		-0.27	-0.02
C_{2i}	$_{\iota}+C_{2d}$	-0.21	± 0.57	-0.0089			-0.30
C_{2i}	$_{\iota}-C_{2d}$	-0.077	± 0.044	-0.0625(5)			
$Q_W(e)$	$=-2C_{2e}$	-0.0403	3 ± 0.0053	-0.0473(5)			

$$\begin{split} -\mathcal{L}^{\nu h} &= \frac{G_F}{\sqrt{2}} \, \overline{\nu} \, \gamma^{\mu} \left(1 - \gamma^5 \right) \nu \sum_i \left[\epsilon_L \left(i \right) \overline{q}_i \, \gamma_{\mu} \left(1 - \gamma^5 \right) q_i + \epsilon_R \left(i \right) \overline{q}_i \, \gamma_{\mu} \left(1 + \gamma^5 \right) q_i \right] \\ -\mathcal{L}^{\nu e} &= \frac{G_F}{\sqrt{2}} \, \overline{\nu}_{\mu} \gamma^{\mu} \left(1 - \gamma^5 \right) \nu_{\mu} \, \overline{e} \, \gamma_{\mu} \left(g_V^{\nu e} - g_A^{\nu e} \gamma^5 \right) e, \\ -\mathcal{L}^{eh} &= -\frac{G_F}{\sqrt{2}} \, \sum_i \left[C_{1i} \, \overline{e} \, \gamma_{\mu} \gamma^5 e \, \overline{q}_i \, \gamma^{\mu} q_i + C_{2i} \, \overline{e} \, \gamma_{\mu} e \, \overline{q}_i \, \gamma^{\mu} \gamma^5 q_i \right], \end{split}$$

Future

- Incorporate all new data, radiative corrections, theory
- Relevant new LHC, flavor physics, BSM
- NuTeV reanalysis (if available by 9/11)
- LEP 2 results (especially for BSM)
- Integrated Z' analysis (precision, LEP2, Tevatron, LHC)
- Better integration with other reviews (e.g., QCD, quark masses, Z')